
## Was kostet die Kernenergie?

Von den "wahren" Kosten der Kernenergie -Gibt es sie? Lassen sie sich bestimmen? Wovon hängen sie ab?

Präsentation bei der SES-Fachtagung Neue Atomkraftwerke in der Schweiz: Fehlinvestition oder Goldesel? Zürich, 12. September 2008 Dr. Wolfgang Irrek
Stellvertretender Leiter der
Forschungsgruppe
Energie-, Verkehrs- und
Klimapolitik



Die "wahren" Kosten sind erst Dutzende oder Hunderte oder gar Tausende von Jahren nach Stilllegung und Rückbau einer kerntechnischen Anlage

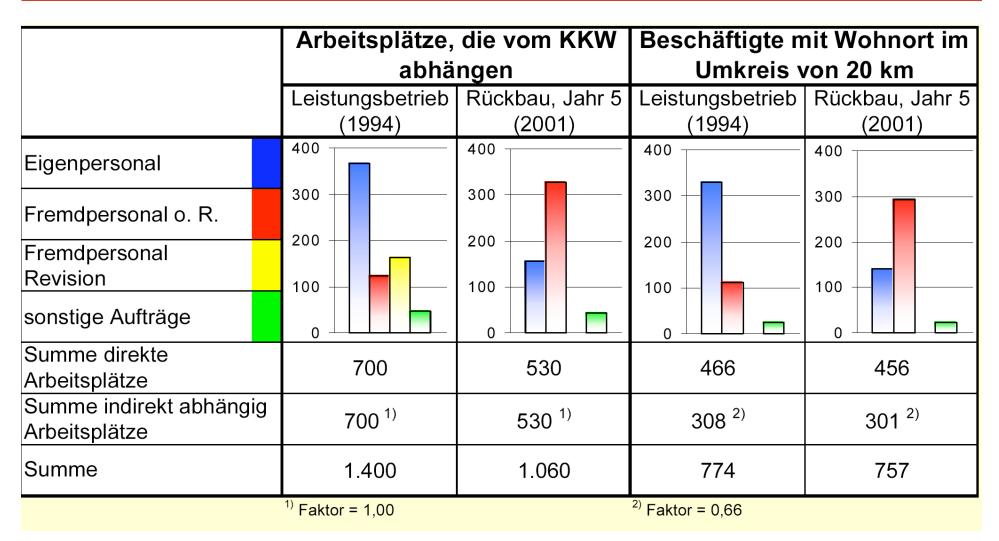


# Anwendungsorientierte Nachhaltigkeitsforschung am Wuppertal Institut

- Ehem. Präsident: Prof. Dr. Peter Hennicke (April 2003 - Januar 2008)
- Vizepräsident: Dr. Manfred Fischedick
- Gründung: 1991 unter der Leitung von Prof. Dr. Ernst Ulrich von Weizsäcker
- Rechtsform: GmbH, Non-Profit-Organisation
- Eigentümer: Land Nordrhein-Westfalen
- Personal: >140 Beschäftigte, multidisziplinär
- Projekte: 80 100 Projekte pro Jahr
- Budget 2007:
   2,3 Millionen Euro Landesförderung (mit abnehmender Tendenz) und rd. 8,0 Millionen Euro von Drittmittelgebern (von UN, EU, Ministerien, Wirtschaft)

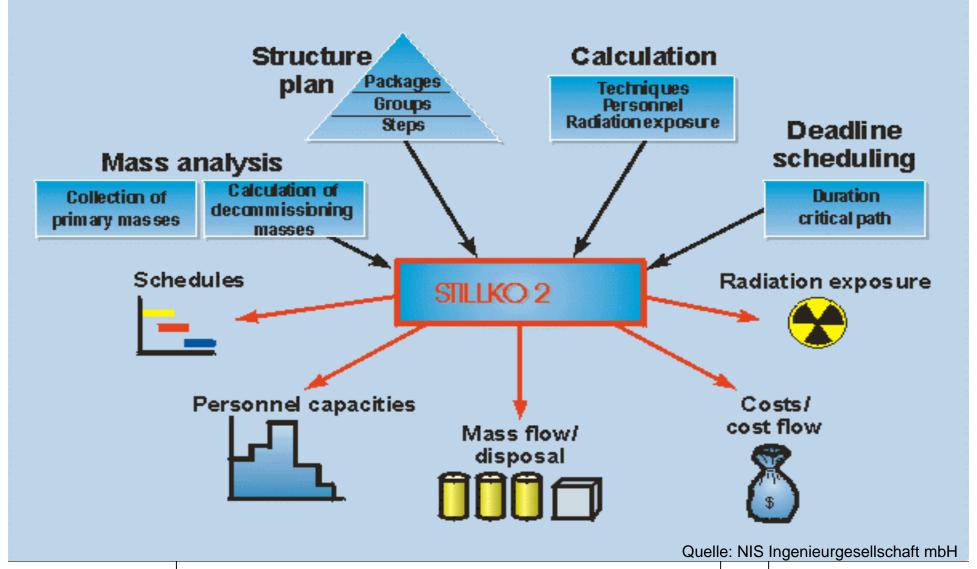


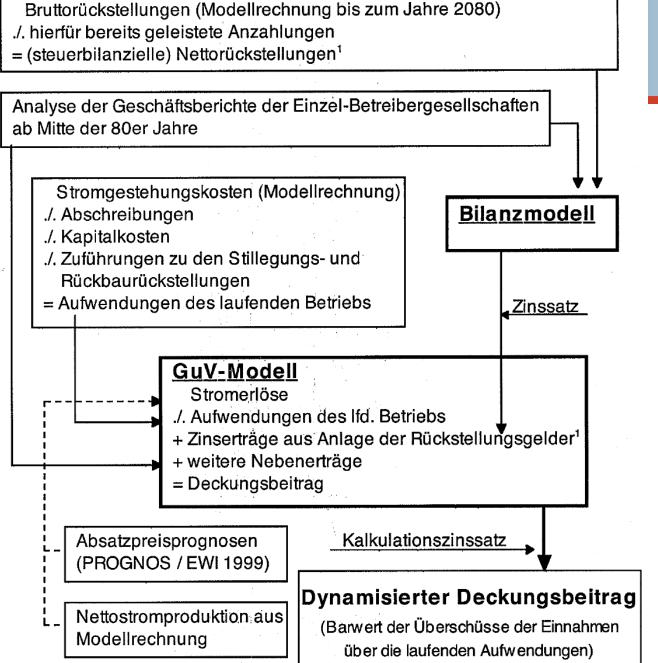



## Überblick

- Quellen für Kostenangaben
- Kostenarten
- Kostenhöhen
- Einflussfaktoren auf Kostenhöhen
- Kosten- und Finanzierungsrisiken
- Zusammenfassende Sensitivitätsüberlegungen

# Quellen für öffentlich zugängliche Kostenangaben: Asymmetrische Informationslage


- Auswertung Geschäftsberichte:
   Unterschied Kostenrechnung und GuV / Bilanz auf Einzelgesellschafts- und Konzernebene
- Publizierte Ergebnisse von Modellrechnungen / Kostenschätzungen
  - Hersteller und Zulieferer
  - Betreiber
  - Consultants
  - Forschung
- Weitergehende Detailinformationen / Empirie

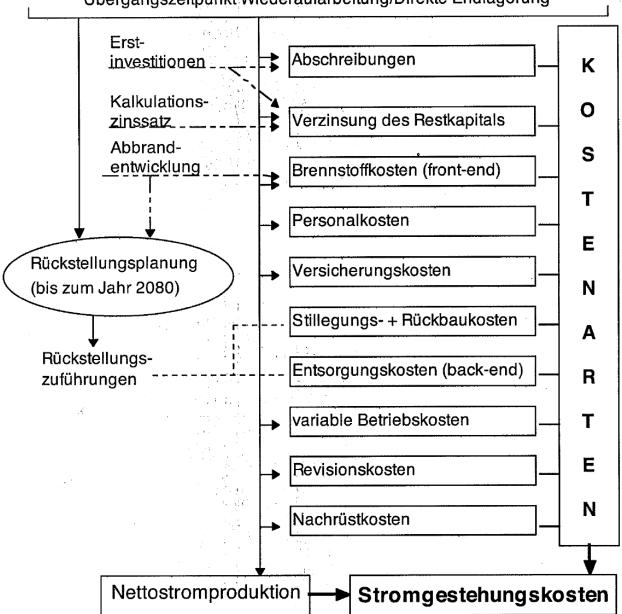

# Beispiel für eine empirische Untersuchung: Arbeitsplätze in Würgassen KWW 1994 / 2001



Quelle: bremer energie institut 2004 in gemeinsamer Studie mit DIW, Wuppertal Institut und IAT im Auftrag von ver.di und BMU

## Beispiel für eine Modellrechnung: STILLKO 2 der NIS Ingenieurgesellschaft mbH






## Wuppertal Institut / Öko-Institut 2000

Kombination dynamisierte Deckungsbeitrags-Modellrechnung mit GuV-Auswertung: Kosten (inkl. Finanzierung) und Erträge

#### BASISANNAHMEN

z.B. Nutzungsdauer, Leistung, Arbeitsausnutzung, Übergangszeitpunkt Wiederaufarbeitung/Direkte Endlagerung



#### Kostenarten

Kostenarten in Modellrechnung von Wuppertal Institut / Öko-Institut 2000 im Auftrag des BMU für deutsche kommerzielle KKW ("Kernkraftwerksscharfe Analyse")

# "Overnight"-Investitionskosten und ihre Unterschätzung

Beispiele regelmäßiger Unterschätzung durch Hersteller / Betreiber:

| Kerntechnische<br>Anlage (Baubeginn)                     | Ursprüngliche<br>Kostenschätzung | Tatsächliche<br>Kosten                                                        | Kostensteigerung |
|----------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------|------------------|
| 75 in Betrieb befindl.<br>US-Reaktoren                   | 45 Mrd. US-\$                    | 145 Mrd. US-\$<br>(Thomas, Bradford, Froggatt,<br>Milborrow 2007)             | +323,5%          |
| Tarapur III und IV,<br>Indien<br>(Erstkritikalität 2006) | 2.428 Rs Crores                  | 6.200 Rs Crores<br>(Ramana et al. 2005)                                       | +255%            |
| Temelin,<br>Tschechische<br>Republik (1987)              | 20 Mrd. CZK (1981)               | 99 Mrd. CZK<br>(IEA 2001 für 1998)                                            | +495%            |
| Sizewell B, UK<br>(1987)                                 | 1.691 Mio. £                     | 3.700 Mio. £ (House of Commons 1990)                                          | +219%            |
| EPR OL 3 Olkiluoto,<br>Finnland (2003)                   | 3,2 Mrd. Euro                    | 4,5 Mrd. Euro bisher (Handelsblatt, 01.09.2008) (inkl. 10% "penalty clause"?) | min. +41%        |

## "Overnight"-Investitionskosten vs. Abschreibungen + Verzinsung inkl. Bauphase

- Wurden Zinsen und Schadensersatzzahlungen während der Bauphase berücksichtigt?
- Zinssatz für Verzinsung des eingesetzten Kapitals?
  - PROGNOS 2008: 2,5% als gesamtwirtschaftlicher Kalkulationszins
  - UK Government: 10%
  - RWE-Return on Capital Employed (ROCE)-Ziel 2006: 14%
- Angenommene Nutzungsdauer und Arbeitsausnutzung bei spezifischen Kostenangaben?
  - Sind 60 Jahre und 7.600 Stunden für den EPR realistisch (PROGNOS 2008)?
- UK-Berechnungsbeispiel

(Thomas, Bradford, Froggatt, Milborrow 2007):

91,2 CHF/MWh mit 10% Verzinsung

128 CHF/MWh mit 15% Verzinsung

# Brennstoffkosten (Front-end): Uranpreis hat nur geringen Einfluss auf Gesamtkosten

#### **PROGNOS 2008:**

 5,8 CHF<sub>2007</sub>/MWh<sub>el</sub> bei Uranpreis von 90 US-\$/kg und Gesamtkosten von 48 CHF<sub>2007</sub>/MWh<sub>el</sub>: Gesamtkostenanteil Brennstoff: 12%; Kostenanteil Uran: 5%

| Uranpreis<br>[US-\$/kg]      | Brennstoffkosten<br>gemäß PROGNOS 2008<br>[CHF <sub>2007</sub> /MWh <sub>el</sub> ] | Veränderung Gesamtkosten<br>(Brennstoffkosten) |
|------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------|
| 136<br>(+51%)<br>(Juni 2007) | 7,1                                                                                 | <b>+2,7%</b> (+23%)                            |
| 59<br>(-35%)<br>(Juni 2008)  | 4,9                                                                                 | <b>-1,8%</b> (-15%)                            |

## Kerntechnische Anlagen sind unterversichert - Das Risiko trägt die Allgemeinheit

- Haftpflichtprämie Deutschland (Harbrücker 2007): 0,13 CHF/MWh
- Grob geschätzte komplette Internalisierung der Kosten eines GAU auf Basis verschiedener Studien zu externen Kosten der Kernenergie (Schmidt 2003): 80 CHF/MWh (EDF-Kraftwerk)



### Nachrüstkosten: Nicht wirklich abschätzbar

- Technische Risiken: Risse im Kernmantel haben in Würgassen 1994 zur Stilllegung aus wirtschaftlichen Gründen geführt
- Politische / regulatorische Risiken: Nachrüstbedarf entsprechend Entwicklung "Stand der Technik"
- Beispiel Biblis A: ca. 500 Mio. Euro Nachrüstung
- PROGNOS 2008: 300 1.300 CHF/kW (Referenz: 840 CHF/kW ≈ ca. 1,8 CHF/MWh<sub>el</sub>)
- Wuppertal Institut / Öko-Institut 2000 (bestehende KKW): durchschnittlich ca. 3,6 CHF/MWh<sub>el</sub>

# Sonstige Betriebskosten für Wartung, Instandhaltung, Revision, etc.

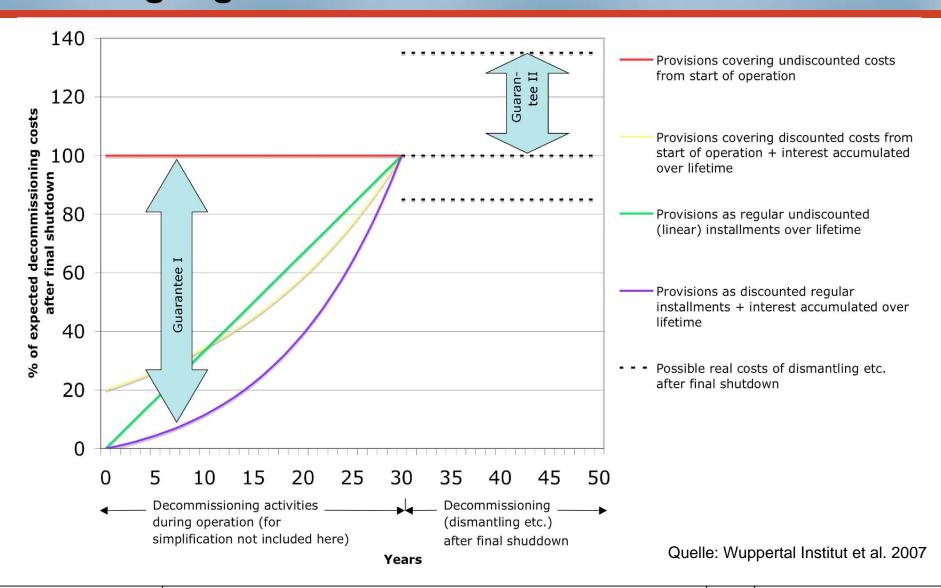
- Tendenziell Unterschätzung der Revisionsdauern in Kostenschätzungen von Herstellern
- Fixe Betriebskosten nach PROGNOS 2008:

62 - 145 CHF/(kW\*a)

(Referenz: 100 CHF/(kW\*a) ≈ ca. 13 CHF/MWh<sub>el</sub>)

> Wuppertal Institut / Öko-Institut 2000 (bestehende KKW):

65 CHF/(kW\*a) ≈ ca. 8,6 CHF/MWh<sub>el</sub> leistungsabhängige


+ ca. 1,2 CHF/Mwh<sub>el</sub> variable Betriebskosten

≈ ca. 9,8 CHF/MWh<sub>el</sub>

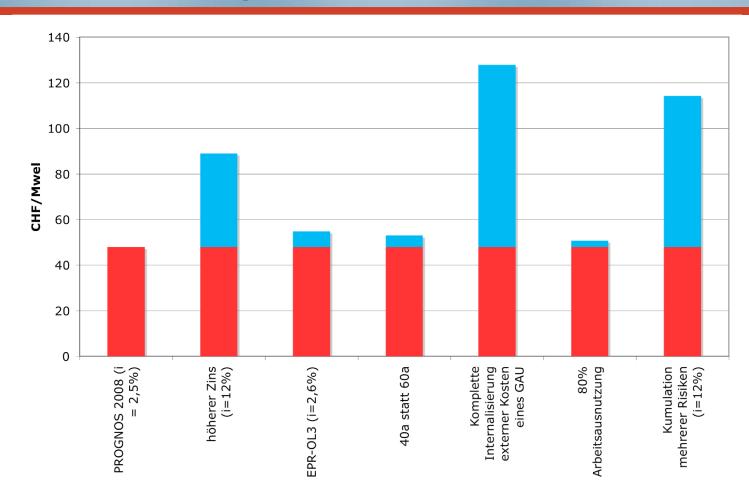
## Das unsichere Back-End: Stillegungs-, Rückbau- und Entsorgungskosten

- Unterschiedliche Entsorgungswege (direkte Endlagerung;
   Wiederaufbereitung)
- Keine Praxiserfahrungen mit Konditionierung und Endlagerung wärmeentwickelnder radioaktiver Abfälle
- Wenig Erfahrungen mit Stilllegung und Rückbau
- Kostenschätzungen sehr unterschiedlich in Europa und weltweit
- Abdiskontierung zukünftiger Kosten lässt Kosten in CHF/MWh<sub>el</sub> gering erscheinen:
  - Zinssatz und Abdiskontierungszeitraum haben großen Einfluss
  - Garantien bei vorzeitiger Stilllegung oder Kostenunterschätzung?
  - Reichen Zuführungen und Nachschusspflicht bei den Schweizer Fonds aus?

## Können die Schweizer Stilllegungs- und **Entsorgungsfonds noch von Schweden lernen?**



16


## Politisch-administrative Einflussfaktoren: Explizite und implizite Begünstigung über die gesamte Prozesskette I

- Direkte staatliche Ausgaben, vor allem für F&E:
  - EURATOM: 83 Mrd. CHF 1974 1998 Hilfszuwendungen und F&E (DNR 2003); about 640 Mrd. CHF gesamte Fördermittel seit 1957 (Eurosolar 2006)
  - Deutschland: bislang 72,3 Mrd. CHF Bundesausgaben seit 1956 + Länderausgaben (Diekmann/Horn, DIW, 2007)
- Begünstigte Kredite, Kreditgarantien, Umschuldungen: EURATOM-Kredite: 4,8 Mrd. CHF 1974 - 1998
  - USA: Bundesbürgschaft für bis zu 80% der Projektkosten
  - EPR OL3: Bürgschaften Frankreichs (650 Mio. Euro) und Schwedens (110 Mio. Euro); Kredit zu 2,6% über 1,95 Mrd. Euro von Bayerischer Landesbank u.a.
- Niedrige Renditeanforderungen bei staatlichen Unternehmen
- Staatliche Unterstützung im Falle von "stranded investments": z.B. British Energy
- Sicherheitsanforderungen: Welches Restrisiko wird akzeptiert?
   Und wie werden Sicherheitsanforderungen umgesetzt?

## Politisch-administrative Einflussfaktoren: Explizite und implizite Begünstigung über die gesamte Prozesskette II

- Haftpflicht und ihre faktische Begrenzung:
   0,13 CHF/MWh in Deutschland (Harbrücker 2007) heute vs.
   80 CHF/MWh bei kompletter privater Versicherung eines typischen EDF-Kraftwerks gemäß Schmidt 2003 (Öko-Institut)
- Prozedere der Finanzierung von Stilllegung, Rückbau und Entsorgung:
  - Verursacherprinzip realisiert oder "Cap" auf vom Betreiber zu tragende Kosten?
  - Verursacherprinzip umsetzbar (Garantien)?
  - Verfügbarkeit über rückgestellte Beträge?
- Entsorgungs-, Konditionierungs- und Endlagerungskonzept: Adäquate Sicherheitsanforderungen?
- Steuervergünstigungen, niedrige Verwaltungsgebühren, Infrastrukturelle Unterstützung, etc.: Steuervergünstigungen in den USA gemäß EPACT 2005: bis zu ca. 22 CHF/MWh bzw. ca. 150 CHF/GW

# Zusammenfassende Sensitivitätsüberlegungen: Was sind mögliche Kosten eines neuen KKW?



Quelle: Wuppertal Institut u. a. auf Basis PROGNOS 2008

[Überblick über existierende Kostenschätzungen nach Thomas, Bradford, Froggatt, Milborrow 2007: **29 - 122 CHF/MWh**<sub>el</sub>]

#### **Fazit**

- Ursprüngliche Herstellerangaben unterschätzen i. d. R. die tatsächlichen Kosten kerntechnischer Anlagen, auch bei neueren Anlagen (z.B. EPR)
- Neben den im "Normalfall" erwarteten Aufwandshöhen (CHF/MWh) sind für Investitions- und Finanzierungsentscheidungen auch Kosten- und Finanzierungsrisiken zu beachten: diese sind prinzipiell hoch
- Wirtschaftliche Risiken sind bei der Generation III/III+ nicht überwunden: warum sollten sie bei Generation IV überwunden werden können?
- Vielfältige Einflüsse auf Kostenhöhen und Kostenrisiken: Politischadministrative Rahmenbedingungen haben größten Einfluss
- Hersteller und Betreiber haben großes Interesse an Reduktion der wirtschaftlichen Risiken und Kostenübernahme durch die Politik
- Wirtschaftlich und finanzierbar sind neue Kernkraftwerke nur mit impliziter oder expliziter staatlicher Begünstigung

## Unter Berücksichtigung der "wahren" Kosten ist die Kernenergie einer der teuersten Energieträger

# "If governments do not facilitate the investment, I don't think nuclear will fly."

Fatih Birol, Chief Economist, OECD International Energy Agency, in: The Economist, 9 November 2006



#### Vielen Dank für Ihre Aufmerksamkeit!



Weitere Informationen finden Sie auf unserer Website:

www.wupperinst.org